o
    1&i                     @   sr  d dl Z d dlZd dlZd dlmZ d dlmZ d dlm	Z	 d dl
mZmZmZmZ d dlmZ dd Zd	d
 Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd  Zd!d" Zd#d$ Zd%d& Z d'd( Z!d)d* Z"d+d, Z#d-d. Z$d/d0 Z%d1d2 Z&d3d4 Z'd5d6 Z(d7d8 Z)d9d: Z*d;d< Z+d=d> Z,d?d@ Z-dAdB Z.dCdD Z/dEdF Z0dGdH Z1dIdJ Z2dKdL Z3dMdN Z4dOdP Z5dQdR Z6dSdT Z7dUdV Z8dWdX Z9dYdZ Z:d[d\ Z;d]d^ Z<d_d` Z=dadb Z>ddcddZ?ddedfZ@ddgdhZAdidj ZBdkdl ZCdmdn ZDdodp ZEdqdr ZFdsdt ZGdudv ZHdwdx ZIdydz ZJd{d| ZKd}d~ ZLdd ZMdd ZNdd ZOdd ZPdd ZQdd ZRdd ZSdd ZTdd ZUdd ZVeWdZXdd ZYdd ZZdd Z[dd Z\dd Z]dd Z^dd Z_dd Z`dd Zadd Zbdd Zcdd Zddd Zedd Zfdd Zgdd Zhdd Zidd Zjdd Zkdd Zldd Zmdd Zndd ZoddÄ Zpddń ZqddǄ ZrdS )    N)ir)Constantimpl_ret_untracked)typingtypeserrorscgutilsviewerc                 C   s   | j rdgS g S )z;
    Return the modifier flags for integer arithmetic.
    Znsw)signed)Zrettype r   @C:\wamp64\www\opt\env\Lib\site-packages\numba/np/math/numbers.py_int_arith_flags   s   r   c                 C   \   |\}}|j \}}| ||||j}| ||||j}	|j||	t|jd}
t| ||j|
S N)flags)argscastreturn_typeaddr   r   contextbuildersigr   vavbtatbabresr   r   r   int_add_impl      
r"   c                 C   r   r   )r   r   r   subr   r   r   r   r   r   int_sub_impl'   r#   r%   c                 C   r   r   )r   r   r   mulr   r   r   r   r   r   int_mul_impl0   r#   r'   c              
   C   s  |j |j ksJ | d}| d}t||}t||}||d|| |j|d|| d}	|j||	dd |||}
|	||}|d|
|||}|d||}|||}||N\}}| ||
| ||| W d	   n1 sw   Y  | |||
|| ||||| W d	   n1 sw   Y  W d	   n1 sw   Y  W d	   n1 sw   Y  ||||fS )
a@  
    Reference Objects/intobject.c
    xdivy = x / y;
    xmody = (long)(x - (unsigned long)xdivy * y);
    /* If the signs of x and y differ, and the remainder is non-0,
     * C89 doesn't define whether xdivy is now the floor or the
     * ceiling of the infinitely precise quotient.  We want the floor,
     * and we have it iff the remainder's sign matches y's.
     */
    if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) {
        xmody += y;
        --xdivy;
        assert(xmody && ((y ^ xmody) >= 0));
    }
    *p_xdivy = xdivy;
    *p_xmody = xmody;
    r      ==TZlikely<!=N)typer	   Zalloca_once_valueand_icmp_signedminvalif_thennot_ZsdivZsremxorif_elsestorer$   r   load)r   r   tyxyZEROONEZresdivZresmodZis_overflowZxdivyZxmodyZy_xor_xmody_ltzZxmody_istrueZcondZif_different_signsZif_same_signsr   r   r   int_divmod_signed9   s:   

r=   c                 C   s.   |j rt| ||||S ||||||fS )zD
    Integer divmod(x, y).  The caller must ensure that y != 0.
    )r   r=   ZudivZurem)r   r   r8   r9   r:   r   r   r   
int_divmodr   s   r>   c              	   C   sf  |\}}|j \}}|j}	t|	tjr|	j}	| ||||	}
| ||||	}tj||
j	dd}tj||
j	dd}|j
t||dde\}}| | j||fs\||| ||| W d    n1 sfw   Y  | t| ||	|
|\}}||| ||| W d    n1 sw   Y  W d    ||fS W d    ||fS 1 sw   Y  ||fS )NquotnameremFr+   )r   r   
isinstancer   ZUniTupledtyper   r	   alloca_oncer.   r5   is_scalar_zeroerror_modelfp_zero_divisionr6   r>   )r   r   r   r   Zzerodiv_messager   r   r   r   r8   r   r    r?   rB   if_zeroif_non_zeroqrr   r   r   _int_divmod_impl|   s>   


rM   c                 C   s0   t | |||d\}}t|||||fS )Nzinteger divmod by zero)rM   r	   
pack_arrayr7   r   r   r   r   r?   rB   r   r   r   int_divmod_impl   s   
rP   c                 C   s   t | |||d\}}||S )Nzinteger division by zerorM   r7   rO   r   r   r   int_floordiv_impl      

rR   c                 C   s   |\}}|j \}}| ||||j}| ||||j}	t||	 | j|d W d    n1 s3w   Y  |||	}
t| ||j|
S )Nzdivision by zero)	r   r   r   r	   rI   rG   rH   fdivr   r   r   r   r   int_truediv_impl   s   
rV   c                 C   s   t | |||d\}}||S )Nzinteger modulo by zerorQ   rO   r   r   r   int_rem_impl   rS   rW   c                 C   s&   t |tjr| jjsd|jd > S dS )Nr*   r(   F)rC   r   IntegerrG   Zraise_on_fp_zero_divisionbitwidth)r   r   r   r   r   _get_power_zerodiv_return   s
   rZ   c                    sR   t |jd tj |jt|  fdd}| ||||}t| ||j|S )z@
    a ^ b, where a is an integer or real, and b an integer
    r   c                    s   d}| } |dk r0d}| }|dk rt  r/| dkr%r!S td| dkr/| dkr/dS nd}|}|dkr@t| t|S |dkrX|d@ rL|| 9 }|dL }| | 9 } |dksD|r^d| S |S )	Nr(   r   T&0 cannot be raised to a negative powerr*   F         ?)OverflowErrorZeroDivisionErrormathpowfloat)r   r    rL   invertexp
is_integertpzerodiv_returnr   r   	int_power   s4   z!int_power_impl.<locals>.int_power)rC   r   r   rX   r   rZ   compile_internalr   )r   r   r   r   ri   r!   r   re   r   int_power_impl   s   
rk   c                    s  |j d j}t|tjstt|dkrt|dk }t|}|j}t|tj	t
| ||  |d |j d |}|j} fdd}	|d}
|}|dkrc|d@ rV|	|
|}
|dL }|	||}|dksM|rrnfdd}ndd }|  |t|||
f}
|
S )	zH
    a ^ b, where a is an integer or real, and b a constant integer
    r(   r\   r   c                    s   r  | |S  | |S N)r&   fmul)r   r    )r   rf   r   r   r&     s   zstatic_power_impl.<locals>.mulc                    s0   | dkr r S t d| dkr| dkrdS | S )Nr   r[   r(   r*   )r_   r   )rh   r   r   invert_impl  s   z&static_power_impl.<locals>.invert_implc                 S   s   d|  S )Nr]   r   rn   r   r   r   ro   ,  s   )r   valuerC   numbersIntegralNotImplementedErrorabsr   r   rX   rZ   r   r.   rj   r   	signature)r   r   r   r   rd   rc   rg   valltyr&   r!   r   ro   r   )r   rf   rh   r   static_power_impl   s:   


rx   c                 C   "   |j dg|R  }t| ||j|S Nr,   r0   r   r   r   r   r   r   r!   r   r   r   int_slt_impl5     r}   c                 C   ry   Nz<=r{   r|   r   r   r   int_sle_impl:  r~   r   c                 C   ry   N>r{   r|   r   r   r   int_sgt_impl?  r~   r   c                 C   ry   Nz>=r{   r|   r   r   r   int_sge_implD  r~   r   c                 C   ry   rz   icmp_unsignedr   r   r|   r   r   r   int_ult_implI  r~   r   c                 C   ry   r   r   r|   r   r   r   int_ule_implN  r~   r   c                 C   ry   r   r   r|   r   r   r   int_ugt_implS  r~   r   c                 C   ry   r   r   r|   r   r   r   int_uge_implX  r~   r   c                 C   ry   Nr)   r   r|   r   r   r   int_eq_impl]  r~   r   c                 C   ry   Nr-   r   r|   r   r   r   int_ne_implb  r~   r   c                        fdd}|S )Nc           
         s`   |\}}| d|t|jd}|  |t|jd}| ||}||||}	t| ||j|	S Nr,   r   r0   r   r.   r   selectr   r   
r   r   r   r   leftrightcmp_zerolt_zeroZge_zeror!   opr   r   implh  s   
z%int_signed_unsigned_cmp.<locals>.implr   r   r   r   r   r   int_signed_unsigned_cmpg  s   r   c                    r   )Nc           
         s`   |\}}| d|t|jd}|  t|jd|}| ||}||||}	t| ||j|	S r   r   r   r   r   r   r   |  s   z%int_unsigned_signed_cmp.<locals>.implr   r   r   r   r   int_unsigned_signed_cmp{  s   r   c           	      C   sH   |\}t |jd }|d||}||}||||}t| ||j|S rz   )r   r.   r0   negr   r   r   )	r   r   r   r   r9   r;   ZltzZnegatedr!   r   r   r   int_abs_impl  s   
r   c                 C      |\}t | ||j|S rl   r   r   r   r   r   r   r9   r   r   r   identity_impl     r   c                 C   r   rl   r   r   r   r   r   uint_abs_impl  r   r   c           	      C   sR   |j \}}|\}}| ||||j}| ||||j}|||}t| ||j|S rl   )r   r   r   Zshlr   	r   r   r   r   ZvaltyZamttyrv   amtr!   r   r   r   int_shl_impl     
r   c           	      C   sh   |j \}}|\}}| ||||j}| ||||j}|jjr&|||}n|||}t| ||j|S rl   )r   r   r   r   ZashrZlshrr   r   r   r   r   int_shr_impl  s   
r   c                 C   R   |j \}}|\}}| ||||j}| ||||j}	|||	}
t| ||j|
S rl   )r   r   r   r/   r   r   r   r   r   atZbtavZbvZcavZcbcr!   r   r   r   int_and_impl  r   r   c                 C   r   rl   )r   r   r   or_r   r   r   r   r   int_or_impl  r   r   c                 C   r   rl   )r   r   r   r4   r   r   r   r   r   int_xor_impl  r   r   c                 C   s:   |j \}|\}||}| ||||j}t| ||j|S rl   )r   r   r   r   r   r   r   r   r   typrv   r!   r   r   r   int_negate_impl  s
   
r   c                 C   0   |j \}|\}| ||||j}t| ||j|S rl   r   r   r   r   r   r   r   r   int_positive_impl     r   c                 C   sR   |j \}|\}||t|jtd|jj d}| ||||j}t| ||j|S )N1   )	r   r4   r   r.   intwidthr   r   r   r   r   r   r   int_invert_impl  s
   "r   c                 C   s  |\}t |jd}t |jd}t |jd}|d||}|d||}	t||j}
|d}|d}|d}|d	}|d
}|||| || |	||
 |
| W d   n1 sew   Y  || ||	|| W d   n1 sw   Y  || |	||
 |
| W d   n1 sw   Y  || |	||
 |
| W d   n1 sw   Y  || ||
}t| ||j|S )z
    np.sign(int)
    r(   r*   r   r)   r   z.zeroz.postestz.posz.negz.exitN)r   r.   r   r0   r	   rE   append_basic_blockZcbranchZ
goto_blockr6   branchZposition_at_endr7   r   r   )r   r   r   r   r9   POSNEGr;   r   Zcmp_pospresultZbb_zeroZ
bb_postestZbb_posZbb_negZbb_exitr!   r   r   r   int_sign_impl  s>   






r   c                 C   s:   |j \}|\}| ||||j}||}t| ||j|S rl   )r   r   r   r   r   r   r   r   r   bool_negate_impl  
   
r   c                 C   r   rl   r   r   r   r   r   bool_unary_positive_impl  r   r   c                 C      |j | }t| ||j|S rl   )faddr   r   r|   r   r   r   real_add_implf     
r   c                 C   r   rl   )fsubr   r   r|   r   r   r   real_sub_implk  r   r   c                 C   r   rl   )rm   r   r   r|   r   r   r   real_mul_implp  r   r   c                 C   sX   t ||d  | j|d W d    n1 sw   Y  |j| }t| ||j|S )Nr(   rT   )r	   rI   rG   rH   rU   r   r   r|   r   r   r   real_div_implu  s
   
r   c                 C   s   |j |j ksJ |j }|j}| d|j g}t|||t|f}t|||}|jrQd|_	t
|d}	|j\}
}}t| |	|
|\}}|	|| |	| t||}|||||f}|||fS )Nz.numba.python.remZlinkonce_odrentry)r.   moduleZmanglerr   FunctionTypeZPointerTyper	   get_or_insert_functionZis_declarationlinkageZ	IRBuilderr   r   real_divmod_func_bodyr6   retrE   callr7   )r   r   r9   r:   Zfloattyr   fnamefntyfnZ	fnbuilderZfxfypmoddivmodZquotientr   r   r   real_divmod|  s    
r   c              
   C   s  t ||j}t ||j}t ||j}|||}|||||}||| ||| |d}	|d}
|d}|d||	}|d||	}|d||	}|j	|ddk\}}|8 |
d||}|| ||||| ||||| W d    n1 sw   Y  W d    n1 sw   Y  | |||
|	}||| W d    n1 sw   Y  W d    n1 sw   Y  ~~||}|d||	}||M tjtjd}|t|j }| tjt||}|||g}|||}|||}t|jd	}|d
||}||||}||| W d    n	1 s3w   Y  t ||$ |||}||| |||||}||| W d    n	1 sfw   Y  ||||fS )N        g       r]   r-   r,   Tr+   )rb   doubleg      ?r   )r	   rE   r.   fremrU   r   r6   fcmp_unorderedfcmp_orderedr5   r   r2   r   r   r7   r   Zfloat32Zfloat64strget_functionr`   floorr   ru   r   Zifnotrm   )r   r   ZvxZwxr   ZpdivZ	pfloordivr   r   r;   ZNZEROr<   Z
mod_istrueZwx_ltzZmod_ltzZif_nonzero_modZif_zero_modZwx_ltz_ne_mod_ltzZ
div_istrueZrealtypemapZrealtypeZfloorfnfloordivZfloordivdiffZfloordivincrZHALFpredr   r   r   r     sl   .


	

r   c              	   C   s4  |\}}t j||jdd}t j||jdd}|jt ||ddc\}	}
|	( | j|d|sG|||}|||}|	|| |	|| W d    n1 sQw   Y  |
 t
| |||\}}|	|| |	|| W d    n1 sxw   Y  W d    n1 sw   Y  t |||||fS )Nr?   r@   rB   Fr+   zmodulo by zero)r	   rE   r.   r5   rF   rG   rH   rU   r   r6   r   rN   r7   )r   r   r   r   locr9   r:   r?   rB   rI   rJ   rK   rL   r   r   r   real_divmod_impl  s2   	r   c              	   C   s   |\}}t ||j}|jt ||ddQ\}}	| | j|d|s0|||}
||
| W d    n1 s:w   Y  |	 t	| |||\}}
||
| W d    n1 s[w   Y  W d    n1 sjw   Y  t
| ||j||S )NFr+   r   )r	   rE   r.   r5   rF   rG   rH   r   r6   r   r   r   r7   )r   r   r   r   r   r9   r:   r!   rI   rJ   rB   _r   r   r   real_mod_impl  *   
r   c              	   C   s   |\}}t ||j}|jt ||ddQ\}}	| | j|d|s0|||}
||
| W d    n1 s:w   Y  |	 t	| |||\}
}||
| W d    n1 s[w   Y  W d    n1 sjw   Y  t
| ||j||S )NFr+   rT   )r	   rE   r.   r5   rF   rG   rH   rU   r6   r   r   r   r7   )r   r   r   r   r   r9   r:   r!   rI   rJ   r?   r   r   r   r   real_floordiv_impl+  r   r   c           
      C   s^   |\}}|j }| jr| tj|}|||}n|d|jg}	||	||f}t| ||j	|S )Nzllvm.pow)
r   Zimplement_powi_as_math_callr   r`   ra   Zdeclare_intrinsicr.   r   r   r   )
r   r   r   r   r9   r:   r   impr!   r   r   r   r   real_power_impl>  s   r   c                 C   ry   rz   r   r   r   r|   r   r   r   real_lt_implJ  r~   r   c                 C   ry   r   r   r|   r   r   r   real_le_implO  r~   r   c                 C   ry   r   r   r|   r   r   r   real_gt_implT  r~   r   c                 C   ry   r   r   r|   r   r   r   real_ge_implY  r~   r   c                 C   ry   r   r   r|   r   r   r   real_eq_impl^  r~   r   c                 C   ry   r   )r   r   r   r|   r   r   r   real_ne_implc  r~   r   c                 C   s,   |j \}t||}| tj|}|||S rl   )r   r   ru   r   r`   fabs)r   r   r   r   r8   r   r   r   r   real_abs_implh  s   
r   c                 C   s,   ddl m} |||d }t| ||j|S Nr   mathimpl)numba.cpythonr   negate_realr   r   )r   r   r   r   r   r!   r   r   r   real_negate_implo  s   r  c                 C   r   rl   r   r   r   r   r   real_positive_implu  r   r  c                 C   s~  |\}t |jd}t |jd}t |jd}t||j}|d||}	|d||}
||	{\}}| ||| W d   n1 sEw   Y  |O ||
:\}}| ||| W d   n1 shw   Y  | ||| W d   n1 sw   Y  W d   n1 sw   Y  W d   n1 sw   Y  W d   n1 sw   Y  ||}t| ||j	|S )z
    np.sign(float)
    r(   r*   r   r   r,   N)
r   r.   r	   rE   r   r5   r6   r7   r   r   )r   r   r   r   r9   r   r   r;   r   Zis_posZis_negZgt_zeroZnot_gt_zeror   Znot_lt_zeror!   r   r   r   real_sign_impl|  s6   
r  c                 C   $   | j |||d}|j}t| |||S Nrp   )make_complexrealr   r   r   r   rp   Zcplxr!   r   r   r   complex_real_impl     r  c                 C   r  r  )r  imagr   r
  r   r   r   complex_imag_impl  r  r  c                 C   sL   ddl m} | ||jd |d }|||j|_| }t| ||j|S r   )	r   r   r  r   r  r  	_getvaluer   r   )r   r   r   r   r   zr!   r   r   r   complex_conjugate_impl  s
   r  c                 C   s   t | |||S rl   r   )r   r   r   rp   r   r   r   real_real_impl     r  c                 C   s   t |j}t| |||S rl   )r	   Zget_null_valuer.   r   )r   r   r   rp   r!   r   r   r   real_imag_impl  s   r  c                 C   s   t | ||j|d S Nr   r   r   r   r   r   r   r   r   real_conjugate_impl  s   r  c              	   C   s  |\}}|j d }|j}| j|||d}| j|||d}	| ||}
|j}| }|	 }|
 }| |d}| |d}|d|	j|}|d|	j|}|	||}|
|m\}}|! t| ||||f}| j|||d}|j|
_|j|
_W d    n1 sw   Y  |. tjdtjdi| }tt |jgd }t|||}|||||f W d    n1 sw   Y  W d    n1 sw   Y  ||}t| ||j|S )Nr   r  r   r)   Znumba_cpowfZ
numba_cpow   )r   underlying_floatZmake_helperr   Z_getpointerget_constantr   r	  r  r/   r5   complex_mul_implr   Z	complex64Z
complex128r   r   ZVoidTyper.   r	   r   r   r7   r   r   )r   r   r   r   cacbr8   ftyr   r    cr   paZpbZpcZTWOr;   Zb_real_is_twoZb_imag_is_zeroZb_is_twoZthenZ	otherwiser!   Zcres	func_namer   Zcpowr   r   r   complex_power_impl  sH   


r"  c                 C      |\}}|j d }| j|||d}| j|||d}| ||}	|j}
|j}|j}|j}||
||	_||||	_|	 }t| ||j|S Nr   r  )r   r  r	  r  r   r  r   r   r   r   r   r   cxcyr8   r9   r:   r  r   r    r  dr!   r   r   r   complex_add_impl     
r)  c                 C   r#  r$  )r   r  r	  r  r   r  r   r   r%  r   r   r   complex_sub_impl  r*  r+  c                 C   s   |\}}|j d }| j|||d}| j|||d}| ||}	|j}
|j}|j}|j}||
|}|||}||
|}|||}||||	_||||	_|	 }t| ||j	|S )z'
    (a+bi)(c+di)=(ac-bd)+i(ad+bc)
    r   r  )
r   r  r	  r  rm   r   r   r  r   r   )r   r   r   r   r&  r'  r8   r9   r:   r  r   r    r  r(  acZbdadbcr!   r   r   r   r  +  s"   
r  nanc                 C   (   dd }|  ||||}t| ||j|S )Nc                 S   s   | j }| j}|j }|j}|s|stdt|t|kr>|s#tttS || }|||  }t|||  | |||  | S |sEtttS || }|| | }t| j | | j | | j| | j  | S )Nzcomplex division by zero)r	  r  r_   rt   complexNAN)r   r    ZarealZaimagZbrealZbimagratiodenomr   r   r   complex_divE  s.   

z%complex_div_impl.<locals>.complex_divrj   r   r   )r   r   r   r   r5  r!   r   r   r   complex_div_implD  s   r7  c           	      C   sn   ddl m} |j\}|\}| j|||d}| ||}|||j|_|||j|_| }t| ||j	|S )Nr   r   r  )
r   r   r   r  r  r	  r  r  r   r   )	r   r   r   r   r   r   rv   cmplxr!   r   r   r   complex_negate_impld  s   r9  c                 C   r   rl   r   r   r   r   r   rv   r   r   r   complex_positive_implp  r   r;  c                 C   r   |\}}|j d }| j|||d}| j|||d}|d|j|j}	|d|j|j}
||	|
}t| ||j|S )Nr   r  r)   )r   r  r   r	  r  r/   r   r   )r   r   r   r   r&  r'  r   r9   r:   Zreals_are_eqZimags_are_eqr!   r   r   r   complex_eq_implu     
r=  c                 C   r<  )Nr   r  r-   )r   r  r   r	  r  r   r   r   )r   r   r   r   r&  r'  r   r9   r:   Zreals_are_neZimags_are_ner!   r   r   r   complex_ne_impl  r>  r?  c                 C   r0  )z)
    abs(z) := hypot(z.real, z.imag)
    c                 S   s   t | j| jS rl   )r`   hypotr	  r  )r  r   r   r   complex_abs  s   z%complex_abs_impl.<locals>.complex_absr6  )r   r   r   r   rA  r!   r   r   r   complex_abs_impl  s   rB  c                 C   s   |d S )z;
    The no-op .item() method on booleans and numbers.
    r   r   r  r   r   r   number_item_impl  s   rC  c                 C   s:   |j \}|\}| ||||j}||}t| ||j|S rl   )r   r   r   r3   r   )r   r   r   r   r   rv   Zistruer!   r   r   r   number_not_impl  r   rD  c                 C   s
   |\}|S rl   r   r:  r   r   r   bool_as_bool  s   rE  c                 C      |\}| d|t|jdS )Nr-   r   )r   r   r.   r:  r   r   r   int_as_bool     rG  c                 C   rF  )Nr-   r   )r   r   r.   r:  r   r   r   float_as_bool  rH  rI  c                 C   s^   |j \}|\}| |||}|j|j}}t|jd}	|d||	}
|d||	}||
|S )Nr   r-   )r   r  r	  r  r   r.   r   r   )r   r   r   r   r   rv   r8  r	  r  zeroZreal_istrueZimag_istruer   r   r   complex_as_bool  s   rK  c                 C   s$   |  ||j|j}| |||j|S rl   )get_constant_genericliteral_typeliteral_valuer   r   r   fromtytotyrv   Zlitr   r   r   literal_int_to_number  s   rR  c                 C   sX   |j |j kr|S |j |j k r||| |S |jr#||| |S ||| |S rl   )rY   truncget_value_typer   Zsextzextr   r   rP  rQ  rv   r   r   r   integer_to_integer  s   rW  c                 C   s   | || |S rl   )ZinttoptrrT  rV  r   r   r   integer_to_voidptr  s   rX  c                 C   s.   |  |}|j|jk r|||S |||S rl   )rT  rY   ZfpextZfptruncr   r   rP  rQ  rv   rw   r   r   r   float_to_float  s   
rZ  c                 C   s(   |  |}|jr|||S |||S rl   )rT  r   ZsitofpZuitofprY  r   r   r   integer_to_float     
r[  c                 C   s(   |  |}|jr|||S |||S rl   )rT  r   ZfptosiZfptouirY  r   r   r   float_to_integer  r\  r]  c                 C   s@   |  ||||j}| |jd}| ||}||_||_| S r  )r   r  r  r  r	  r  r  )r   r   rP  rQ  rv   r	  r  r8  r   r   r   non_complex_to_complex!  s   r^  c           	      C   sX   |j }|j }| j|||d}| ||}| ||j|||_| ||j|||_| S r  )r  r  r   r	  r  r  )	r   r   rP  rQ  rv   ZsrctyZdsttysrcdstr   r   r   complex_to_complex+  s   ra  c                 C   s   |  |||S rl   )is_truerV  r   r   r   any_to_boolean6  r  rc  c                 C   s$   | |td}| ||tj|S )N    )rU  r   ZIntTyper   r   Zint32)r   r   rP  rQ  rv   Zasintr   r   r   boolean_to_any:  s   re  c                 C   s"   |  ||j|j}| ||j|S rl   )rL  rM  rN  rb  rO  r   r   r   literal_int_to_booleanA  s   rf  c                 C   s4   |j }| |||j}| |||j}t||fS rl   )r  rL  r	  r  r   Zliteral_struct)r   r   r8   pyvalr  r	  r  r   r   r   constant_complexM  s   rh  c                 C   s&   t |tjr
t|}| |}||S rl   )rC   npZbool_boolrT  )r   r   r8   rg  rw   r   r   r   constant_integerV  s   
rk  c                 C   sL   t | tjtjfr"t |tjjr$| j|jjkrt	ddd }|S dS dS )z) Typing for the np scalar 'view' method. zOChanging the dtype of a 0d array is only supported if the itemsize is unchangedc                 S   s
   t | |S rl   r
   )scalarviewtyr   r   r   r   m  s   
zscalar_view.<locals>.implN)
rC   r   FloatrX   ZabstractZ	DTypeSpecrY   rD   r   ZTypingError)rl  rm  r   r   r   r   scalar_viewd  s   ro  rl   )sr`   rq   numpyri  Zllvmliter   Zllvmlite.irr   Znumba.core.imputilsr   Z
numba.corer   r   r   r	   Znumba.cpython.unsafe.numbersr   r   r"   r%   r'   r=   r>   rM   rP   rR   rV   rW   rZ   rk   rx   r}   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r  r  r  r  r  r  r  r"  r)  r+  r  rb   r2  r7  r9  r;  r=  r?  rB  rC  rD  rE  rG  rI  rK  rR  rW  rX  rZ  r[  r]  r^  ra  rc  re  rf  rh  rk  ro  r   r   r   r   <module>   s    			9

	/=							*Q
m

@) #

	
	