o
    <&iD                     @   s  d dl Z d dlmZmZ d dlZd dlmZ ddlmZmZm	Z	m
Z
mZmZmZmZmZ ddgZG dd deZd	d
e de	 d e_				d!dee dee dee dee dee dedee dededededededefddZdee dee dee dee dee dedededededededefddZdee dee dee dee dee dedededededededefdd ZdS )"    N)ListOptional)Tensor   )		Optimizer_default_to_fused_or_foreach_differentiable_doc_dispatch_sqrt_foreach_doc
_get_value_stack_if_compiling_use_grad_for_differentiable_view_as_realRAdamradamc                       sd   e Zd Z					ddddded	ee d
ef fddZ fddZdd ZedddZ	  Z
S )r   MbP?g?g+?:0yE>r   FN)foreachdifferentiabledecoupled_weight_decayr   r   c          
   	      s   d|kst d| d|kst d| d|d   kr"dk s,n t d|d  d|d   kr8dk sBn t d|d  d|ksMt d	| t|||||||d
}	t ||	 d S )N        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: r   z#Invalid beta parameter at index 1: zInvalid weight_decay value: )lrbetasepsweight_decayr   r   r   )
ValueErrordictsuper__init__)
selfparamsr   r   r   r   r   r   r   defaults	__class__ <C:\wamp64\www\opt\env\Lib\site-packages\torch/optim/radam.pyr       s(   	zRAdam.__init__c                    s   t  | | jD ]}|dd  |dd |dd q	t| j }t|dko3t	|d d }|sI|D ]}tj
t|d tjd|d< q8d S d S )Nr   r   Fr   r   stepZdtype)r   __setstate__param_groups
setdefaultliststatevalueslentorchZ	is_tensortensorfloatfloat32)r!   r.   groupZstate_valuesZstep_is_tensorsr$   r&   r'   r*   8   s   

zRAdam.__setstate__c           
      C   s   d}|d D ]_}|j d ure|t|O }|| |j jr!td||j  | j| }	t|	dkrPtjdtj	d|	d< tj
|tjd|	d	< tj
|tjd|	d
< ||	d	  ||	d
  ||	d  q|S )NFr"   z'RAdam does not support sparse gradientsr   r   r)   r(   )Zmemory_formatexp_avg
exp_avg_sq)gradr1   
is_complexappendZ	is_sparseRuntimeErrorr.   r0   r2   r4   Z
zeros_likeZpreserve_format)
r!   r5   params_with_gradgradsexp_avgsexp_avg_sqsstate_stepshas_complexpr.   r&   r&   r'   _init_groupF   s,   




zRAdam._init_groupc                 C   s   d}|durt   | }W d   n1 sw   Y  | jD ]:}g }g }g }g }g }|d \}	}
| ||||||}t||||||	|
|d |d |d |d |d |d |d	 q |S )
zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r   r   r   )	beta1beta2r   r   r   r   r   r   rB   )r1   Zenable_gradr+   rD   r   )r!   closureZlossr5   r=   r>   r?   r@   rA   rE   rF   rB   r&   r&   r'   r(   c   s<   

z
RAdam.step)r   r   r   r   FN)__name__
__module____qualname__boolr   r    r*   rD   r   r(   __classcell__r&   r&   r$   r'   r      s(    		
!a  Implements RAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
                \lambda \text{ (weightdecay)},                                                   \\
            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
            &\rule{110mm}{0.4pt}  \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{6mm} g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1})                      \\
            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
            &\hspace{12mm}\textbf{else}                                                          \\
            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
            &\hspace{12mm} r_t \leftarrow
      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

    This implementation provides an option to use either the original weight_decay implementation as in Adam
    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.

    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): whether to use decoupled weight
            decay as in AdamW to obtain RAdamW (default: False)
        z	
        a  

    .. _On the variance of the adaptive learning rate and beyond:
        https://arxiv.org/abs/1908.03265
    .. _author's implementation:
        https://github.com/LiyuanLucasLiu/RAdam
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101

    Fr"   r>   r?   r@   rA   r   r   r   rB   rE   rF   r   r   r   c	                C   s   t dd |D std|du rt| |dd\}}|r%tj r%td|r/tj s/t}nt}|| |||||	|
||||||d dS )	zpFunctional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    c                 s   s    | ]	}t |tjV  qd S rH   )
isinstancer1   r   ).0tr&   r&   r'   	<genexpr>   s    zradam.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)Z	use_fusedz6torch.jit.script not supported with foreach optimizers)rE   rF   r   r   r   r   r   rB   )allr<   r   r1   ZjitZis_scripting_multi_tensor_radam_single_tensor_radam)r"   r>   r?   r@   rA   r   r   r   rB   rE   rF   r   r   r   _funcr&   r&   r'   r      s4   
c                C   s  t | D ]\}}|| }|| }|| }|| }t|r1t|}t|}t|}t|}|d7 }t|}d||  }d||  }|dkr\|rU|d||   n|j||d}||d|  ||j||d| d || }dd|  d }|d| ||  |  }|dkrt	
|d |d  | |d |d  |  }|
 }|
r||	}n||	}t	
|| }|j|| | | dd q|j|| dd qd S )	Nr   r   alpha)value   g      @   g      )	enumerater1   r:   Zview_as_realr   Zmul_addZlerp_Zaddcmul_mathsqrtZadd_)r"   r>   r?   r@   rA   rE   rF   r   r   r   r   r   rB   iparamr9   r7   r8   Zstep_tr(   bias_correction1Zbias_correction2Zbias_corrected_exp_avgrho_infrho_trectZexp_avg_sq_sqrtZadaptive_lrr&   r&   r'   rT     sR   





rT   c                   s  t | dkrd S |rJ dt| ||||g}| D ]\\}}}}}}|d jr8tj|tjddddd nt|d |rGt|||| dd  d fd	d
|D }|dkrr|
rjt	|d|   ntj
|||d}t||d   t	| t|||d  ~fdd
|D }dd
 |D } fdd
|D }tfdd
t||D }fdd
t|||D }t|}t||	 t|| t| t|| t||| qd S )Nr   z#_foreach ops don't support autogradr   cpu)ZdevicerW   r   rZ   c                    s8   g | ]}d t |  t |  d t |    qS )rZ   r   r   rO   r(   )rF   rc   r&   r'   
<listcomp>  s
    
z'_multi_tensor_radam.<locals>.<listcomp>c                    sD   g | ]}|d krt |d |d     d  d  |  ndqS )   r[   rZ   r   )r	   )rO   rd   )rc   r&   r'   ri     s    	c                 S   s   g | ]
}|d kr
d ndqS )r   r   r&   )rO   re   r&   r&   r'   ri         c                    s   g | ]
}d  t |  qS )r   rg   rh   )rE   r&   r'   ri     rk   c                    s    g | ]\}} | | d  qS )r&   )rO   re   bc)r   r&   r'   ri     s     c                    s6   g | ]\}}}t d  t|  | |  d qS )r   rl   )r	   r   )rO   r(   re   rm   )rF   r   r&   r'   ri     s    ")r0   r   Z"_group_tensors_by_device_and_dtyper/   Zis_cpur1   Z_foreach_add_r2   r   Z_foreach_mul_Z_foreach_addZ_foreach_lerp_Z_foreach_addcmul_r   zipZ_foreach_sqrtZ_foreach_div_Z_foreach_reciprocal_)r"   r>   r?   r@   rA   rE   rF   r   r   r   r   r   rB   Zgrouped_tensorsZgrouped_paramsZgrouped_gradsZgrouped_exp_avgsZgrouped_exp_avg_sqsZgrouped_state_stepsrU   Z
rho_t_listre   Zunrectifiedrb   Zunrect_step_sizeZ*bias_correction2_sqrt_times_rect_step_sizebufferr&   )rE   rF   r   rc   r'   rS   X  sZ   

	


rS   )FNFF)r^   typingr   r   r1   r   Z	optimizerr   r   r   r	   r
   r   r   r   r   __all__r   __doc__rL   r3   r   rT   rS   r&   r&   r&   r'   <module>   s    ,x/P	

9	

I	
