o
    H&i~                     @   s   d dl Z d dlZd dlZd dlmZ d dlmZ d dlmZm	Z	 dgZ
dd Zg dZg d	Zg d
Zg dZeegZeegZdddZejjdd ZG dd deZdS )    N)constraints)Distribution)broadcast_alllazy_propertyVonMisesc                 C   s,   t |}| }|r| | |  }|s
|S N)listpop)yZcoefresult r   HC:\wamp64\www\opt\env\Lib\site-packages\torch/distributions/von_mises.py
_eval_poly   s   r   )g      ?g$@g03@g,?N?g2t?gIx?gtHZr?)	 e3E?g-5?gՒ+Hub?gJNYgTPÂ?g'gZ?gUL+ߐg;^p?)      ?gY?g(z?g*O?gZ9?g.h?gӰ٩=5?)	r   g.kg?VmgtZOZ?g<Q g'8`?gP⥝gqJ:N?g;PJ4qc                 C   s   |dks
|dks
J | d }|| }t |t| }|dkr#|  | }| }d|  }| d|    t |t|   }t| dk ||}|S )zX
    Returns ``log(I_order(x))`` for ``x > 0``,
    where `order` is either 0 or 1.
    r      g      @r   )r   _COEF_SMALLabslog_COEF_LARGEtorchwhere)xorderr
   ZsmallZlarger   r   r   r   _log_modified_bessel_fnA   s   "r   c                 C   s   t j|jt j| jd}| slt jd|j | j| jd}| \}}}t 	t
j| }	d||	  ||	  }
|||
  }|d|  | dk||  d | dkB }| rht ||d  |
  |}||B }| r|t
j |  dt
j  t
j S )Ndtypedevice)   r      r   r   )r   Zzerosshapeboolr   allZrandr   Zunbindcosmathpir   anyr   signacos)locconcentrationZ
proposal_rr   doneuu1u2u3zfcacceptr   r   r   _rejection_sampleX   s   ,
r4   c                       s   e Zd ZdZejejdZejZdZ	d fdd	Z
dd Zed	d
 Zedd Zedd Ze e fddZ fddZedd Zedd Zedd Z  ZS )r   aX  
    A circular von Mises distribution.

    This implementation uses polar coordinates. The ``loc`` and ``value`` args
    can be any real number (to facilitate unconstrained optimization), but are
    interpreted as angles modulo 2 pi.

    Example::
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> m = VonMises(torch.tensor([1.0]), torch.tensor([1.0]))
        >>> m.sample()  # von Mises distributed with loc=1 and concentration=1
        tensor([1.9777])

    :param torch.Tensor loc: an angle in radians.
    :param torch.Tensor concentration: concentration parameter
    )r)   r*   FNc                    s6   t ||\| _| _| jj}t }t ||| d S r   )r   r)   r*   r    r   Sizesuper__init__)selfr)   r*   validate_argsbatch_shapeZevent_shape	__class__r   r   r7   ~   s   zVonMises.__init__c                 C   sL   | j r| | | jt|| j  }|tdtj  t	| jdd }|S )Nr   r   r   )
_validate_argsZ_validate_sampler*   r   r#   r)   r$   r   r%   r   )r8   valuelog_probr   r   r   r@      s   
zVonMises.log_probc                 C      | j tjS r   )r)   tor   doubler8   r   r   r   _loc      zVonMises._locc                 C   rA   r   )r*   rB   r   rC   rD   r   r   r   _concentration   rF   zVonMises._concentrationc                 C   sh   | j }ddd|d     }|d|   d|  }d|d  d|  }d| | }t|dk ||S )Nr      r   gh㈵>)rG   sqrtr   r   )r8   kappataurho_proposal_rZ_proposal_r_taylorr   r   r   rM      s   zVonMises._proposal_rc                 C   s@   |  |}tj|| jj| jjd}t| j| j| j	|
| jjS )a  
        The sampling algorithm for the von Mises distribution is based on the
        following paper: D.J. Best and N.I. Fisher, "Efficient simulation of the
        von Mises distribution." Applied Statistics (1979): 152-157.

        Sampling is always done in double precision internally to avoid a hang
        in _rejection_sample() for small values of the concentration, which
        starts to happen for single precision around 1e-4 (see issue #88443).
        r   )Z_extended_shaper   emptyrE   r   r)   r   r4   rG   rM   rB   )r8   Zsample_shaper    r   r   r   r   sample   s   

zVonMises.samplec                    sX   zt  |W S  ty+   | jd}| j|}| j|}t| |||d Y S w )Nr>   )r9   )r6   expandNotImplementedError__dict__getr)   r*   type)r8   r:   r9   r)   r*   r;   r   r   rP      s   zVonMises.expandc                 C      | j S )z8
        The provided mean is the circular one.
        r)   rD   r   r   r   mean   s   zVonMises.meanc                 C   rU   r   rV   rD   r   r   r   mode   s   zVonMises.modec                 C   s$   dt | jddt | jdd   S )z<
        The provided variance is the circular one.
        r   r=   r   )r   r*   exprD   r   r   r   variance   s   zVonMises.variancer   )__name__
__module____qualname____doc__r   realZpositiveZarg_constraintsZsupportZhas_rsampler7   r@   r   rE   rG   rM   r   Zno_gradr5   rO   rP   propertyrW   rX   rZ   __classcell__r   r   r;   r   r   h   s,    


		

)r   )r$   r   Z	torch.jitZtorch.distributionsr   Z torch.distributions.distributionr   Ztorch.distributions.utilsr   r   __all__r   Z_I0_COEF_SMALLZ_I0_COEF_LARGEZ_I1_COEF_SMALLZ_I1_COEF_LARGEr   r   r   ZjitZscript_if_tracingr4   r   r   r   r   r   <module>   s$    		

