o
    ZÆ&i¼  ã                   @   s  d dl Z d dlmZ d dlmZmZmZmZmZ d dl	m
Z
mZ eeegdgddddddddœ	eegg d	¢dd
dgddddœgZejejejejejgd
ddgddddddœejejejejejgdgdddddd d ¡ ¡dœgZe j de¡edd„ ƒƒZe j de¡edd„ ƒƒZdS )é    N)Úmetrics)ÚBaggingClassifierÚBaggingRegressorÚIsolationForestÚStackingClassifierÚStackingRegressor)Úassert_docstring_consistencyÚskip_if_no_numpydocZmax_samplesFz4The number of samples to draw from X to train each.*)	ÚobjectsÚinclude_paramsÚexclude_paramsÚinclude_attrsÚexclude_attrsÚinclude_returnsÚexclude_returnsÚdescr_regex_patternZignore_types)ZcvZn_jobsZpassthroughÚverboseTZfinal_estimator_)r
   r   r   r   r   r   r   r   ZaverageZzero_divisionú a/  This parameter is required for multiclass/multilabel targets\.
            If ``None``, the metrics for each class are returned\. Otherwise, this
            determines the type of averaging performed on the data:
            ``'binary'``:
                Only report results for the class specified by ``pos_label``\.
                This is applicable only if targets \(``y_\{true,pred\}``\) are binary\.
            ``'micro'``:
                Calculate metrics globally by counting the total true positives,
                false negatives and false positives\.
            ``'macro'``:
                Calculate metrics for each label, and find their unweighted
                mean\.  This does not take label imbalance into account\.
            ``'weighted'``:
                Calculate metrics for each label, and find their average weighted
                by support \(the number of true instances for each label\)\. This
                alters 'macro' to account for label imbalance; it can result in an
                F-score that is not between precision and recall\.[\s\w]*\.*
            ``'samples'``:
                Calculate metrics for each instance, and find their average \(only
                meaningful for multilabel classification where this differs from
                :func:`accuracy_score`\)\.Úcasec                 C   ó   t di | ¤Ž dS )z@Check docstrings parameters consistency between related classes.N© ©r   ©r   r   r   ú^C:\wamp64\www\opt\env\Lib\site-packages\sklearn/tests/test_docstring_parameters_consistency.pyÚ test_class_docstring_consistencyf   ó   r   c                 C   r   )zBCheck docstrings parameters consistency between related functions.Nr   r   r   r   r   r   Ú#test_function_docstring_consistencym   r   r   )ZpytestZsklearnr   Zsklearn.ensembler   r   r   r   r   Zsklearn.utils._testingr   r	   Z!CLASS_DOCSTRING_CONSISTENCY_CASESZprecision_recall_fscore_supportZf1_scoreZfbeta_scoreZprecision_scoreZrecall_scoreÚjoinÚsplitZ$FUNCTION_DOCSTRING_CONSISTENCY_CASESÚmarkZparametrizer   r   r   r   r   r   Ú<module>   s|   ÷øôûòûçòï>